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Abstract

The rapid grow in machine learning in recent years, especially deep learning, has
brought up a lot of different frameworks that help to create and run deep learning
models. As a consequence, it makes it really difficult to compare results from one
framework with another one. In this work, we split the functionality of deep learn-
ing frameworks into four blocks: Graph definition, graph operation implementation,
optimizing network parameters and generating metrics. Breaking these blocks into
standalone modules gives rise to the possibility to test any block in isolation as well
as in connection with other blocks. Furthermore it makes it possible to swap out
the same type of blocks of different frameworks against each other. By abstracting
away the specifics of the deep learning frameworks, we build general optimizers
that work for any framework in a non distributed case as well as in a distributed
setting.
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Chapter 1

Introduction

1.1 Problem description

There are currently many Deep Learning frameworks. Most of these frameworks
have at least the following 4 things in common:

1. Definition: High level definition of a neural network. This contains the defini-
tion of the Graph, the learning method, its loss function and defined output.

2. Implementation: The actual implementation of the specific operations defined
in the graph.

3. Training: Run training data through the network and update the weights ac-
cording to some optimization algorithm and the gradients.

4. Metrics: During training or inference phase, record different metrics as for
example accuracy and time used to run an optimization step.

The parts mentioned above are fully integrated in the current frameworks and there
is no way to use a part from e.g. Tensorflow in Caffe2 or vice versa. But there had
been attempts to develop standalone modules from the list above with a fix defined
API. One of these is the ONNX, project which provides an independent format to
define neural network graphs. The Keras project [10], on the other hand, tries to
facilitate some of the definition part from the actual implementation of the network
by allowing either Tensorflow or torch as backends.

There result a multitude of problems from this entanglement: It is difficult to
compare the same parts of two different frameworks and not possible to swap the
same type of blocks of two different frameworks.

1.2 In this work

We created a framework, called Deep500, that detangles the specific blocks further
by providing new abstraction levels. The abstraction layer is a fixed defined API
between the different blocks identified above.
By defining a set of all neural network basis functions it is possible to abstract away
a specific implementation of any backend.
Every deep learning framework has some kind of mechanism to run and examine a
neural network this is hidden behind the network abstraction layer.
Because the access to the specific neural networks is hidden behind the network
abstraction layer we can build a general optimization framework on top of it that
works for any framework.
Using the non distributed optimization framework we build a distributed optimiza-
tion framework that can utilizes many GPUs and computers in parallel and works
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for any non distributed optimizer.
By implementing the different deep learning frameworks behind the API one gets
the possibility to test and report on every block in the framework independently:
Single operations, whole networks, optimizers and distributed optimizers. These
results then can be compared against other frameworks.
A rough diagram of the parts discussed here can be seen in figure 1.1.

FIGURE 1.1: Rough diagram of the abstraction layers interplay
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Chapter 2

Background

This chapter gives a formal introduction into the theory, concepts and technologies
this work is based upon.

2.1 Neural Networks

2.1.1 Problem Description

The following problem or some kind of variation of it occurs a lot in the real world:
Given some set of objects {(xi, yi) ∈ X ×Y}i≤n, a mapping function f : X → Y , and
a loss function ` : ((X × Y)n × f ) → R find the function f ∗ : X → Y = argmin f `
which minimizes ` given the data (X ×Y)n.
Example: Given n flowers, let X be the a common subset of the properties of flowers
(e.g. color, size) and Y its corresponding flower type (e.g. sunflower, orchidaceae)
this gives rise to the data (X ×Y)n. Then the mapping function f : X → Y gives the
flower type for given properties. A natural loss function ` for this kind of problem is
the number of wrong mapping. And then the solution f ∗ is the mapping that makes
the least mistakes.

2.1.2 Neural Network

In broadest terms a neural network is a composition of multiple possibly different
functions. This composition of functions is just a new function which could possibly
again be combined with other functions. So the author encourages the reader to
think about a neural network just in terms of simple computational building blocks
(functions) that get stacked on top of each other to create an even bigger building
block.
Formally we could describe a network in the following way: We have a set Φ of
n possible basis functions with φi ∈ Φ : Rdi → Rmi where n, di, mi,∈ N. New
functions are created by composition: f := φi ◦ φj with i, j ≤ n ( f := φi ◦ id = φi

possible). It is often the case that a function φi : Rdi → Rmi has di amount of elements
as input but the function φj : Rdj → Rmj it is composed with provides only mj ≤
mi dimension of its output. We circumvent this by stacking functions into vectors

as follows:
(

φj
θ

)
where θ ∈ Rmi−mj and is called a parameter. Note that such a

parameter could also be just another function. Since φj itself has also some input the

input vector to the whole composition f := φi ◦ φj is visualized as follows: f (
(

x
θ

)
).

Since most of the functions work this way a composition fl := f0 ◦ f1 ◦ · · · ◦ fl−1 can
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have up to millions of parameters with the final call looking like:

fl(


x
θ1
· · ·
θk

), k� n.

The term neural network refers commonly to the composed function fl .

2.1.3 Inference

The action of mapping an object x ∈ X into a category y ∈ Y is called inference in
this text. Applied to neural networks this means to call the function composition by
supplying the necessary input: y = f ((x, θ1, ..., θn)T).

2.1.4 Training

The previous parts raise 2 obvious and important questions:

1. Which and how should one compose the function fl (the neural network)?

2. Which parameters are best such that the best categories get chosen for some
object x ∈ X ?

There are a multitude of methods to solve both of these problems. But since in this
work it is assumed that the function f and therefore implicitly the loss function ` is
already given no solutions to 1 are provided.
Additionally the term deep learning is considered a synonym to neural network in
this text.

2.2 Frameworks to build neural networks

There are multiple frameworks that help build a neural network. The most com-
monly used frameworks are: Tensorflow [1], PyTorch[16] and Caffe2 [3].
These framework commonly provide:

1. Definition: These frameworks give simple ways to build the neural network
(function fl) and already provide many building blocks (base functions) so that
complicated networks can be written in a concise way. Each of the mentioned
frameworks provide this functionality through one or multiple well known
programming languages.

2. Implementation: Each base function gets called at some point if inference is
run. To get as much speed as possible these functions are implemented in high
performance code (commonly c++).

3. Training: The algorithms that find the parameters mentioned in the training
part are provided by the framework.

4. Metrics: Most of the time inferring data and training a neural network is just
not enough. Reporting the average inference time, losses, etc. are data worth
saving and analyzing. In this respect frameworks have a lot to catch up. While
there is the possibility to program everything by hand it would certainly make
sense to provide this features out of the box.
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2.3 Protobuf

Google protobuf is a framework that helps building high performance protocols.
With protocol it is meant a way to serialize and dezerialize objects from and to bi-
nary code. Tensorflow, Caffe2 and deep500 all incorporate protobuf to communicate
between backend and definition part of the frameworks. A protocol can be defined
in the following simple way:

1 message Person {
2 required s t r i n g name = 1 ;
3 required i n t 3 2 id = 2 ;
4 opt iona l s t r i n g email = 3 ;
5 }

LISTING 2.1: Define a simple person protocol

Multiple messages can be reused inside other messages like the concept of classes
that is known from object oriented languages.
Is such a protocol defined, protobuf generates endpoints (serializer, dezerializer) for
specified programming languages. The usage of which is shown in the two listings
below.

Serializing data looks the following way:

1 Person john = Person . newBuilder ( )
2 . s e t I d ( 1 2 3 4 )
3 . setName ( " John " )
4 . se tEmai l ( " john@doe . com" )
5 . bui ld ( ) ;
6 output = new FileOutputStream ( " some_f i le " ) ;
7 john . writeTo ( output ) ;

LISTING 2.2: Serialize a person

Since this is now a compressed binary file unable to be read by humans the listing
2.3 shows how to work with it in c++:

1 Person john ;
2 fs tream input ( " some_f i le " , i o s : : in | ops : : binary ) ;
3 john . ParseFromIstream(& input ) ;
4 id = john . id ( ) ;
5 name = john . name ( ) ;
6 email = john . email ( ) ;

LISTING 2.3: Read the serialized person (deserialize)

Protobuf is used by Caffe2 as well as by Tensorflow to define the network and then
send it to its c++ backend.

2.4 ONNX

When one creates a neural network with tensorflow or Caffe2 the framework builds
a concise internal representation in the building process. When inference is run this
data is sent to the c++ implementation where it is interpreted and executed. This
data is built with protobuf.
ONNX now tries to replace this representation in a standardized protocol. Similarity
claims between LLVM to ONNX can certainly be made. The frameworks currently
fulfill the purpose of a frontend (defining a network) and backend (executing the in-
termediate language). The building blocks that one can use are defined in the ONNX
catalogue. The definition of such a building block in case of argmax can be seen in



6 Chapter 2. Background

FIGURE 2.1: Argmax operation cut out of ONNX catalogue

figure 2.1.
ONNX is defined as a protobuf protocol. The two most important protobuf mes-
sages are NodeProto and GraphProto both seen in 2.4 and 2.5 which are copied from
the ONNX framework code. NodeProto defines an Operation with inputs, outputs,
attributes and most importantly a string op_type. The op_type has to correspond to
one of the op_types in the ONNX catalogue. GraphProto on the other hand is just
the container that holds all the operations in the graph in topological order.

1 message NodeProto {
2 repeated s t r i n g input = 1 ;
3 repeated s t r i n g output = 2 ;
4

5 // An opt iona l i d e n t i f i e r f o r t h i s node in a graph .
6 // This f i e l d MAY be absent in ths vers ion of the IR .
7 s t r i n g name = 3 ;
8

9 // The symbolic i d e n t i f i e r of the Operator to execute .
10 s t r i n g op_type = 4 ;
11 // The domain of the OperatorSet t h a t s p e c i f i e s the operator
12 // named by op_type .
13 s t r i n g domain = 7 ;
14

15 // Addit ional named a t t r i b u t e s .
16 repeated A t t r i b u t e P r o t o a t t r i b u t e = 5 ;
17

18 // A human−readable documentation f o r t h i s node .
19 // Markdown i s allowed .
20 s t r i n g doc_s t r ing = 6 ;
21 }

LISTING 2.4: ONNX NodeProto definition
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1 message GraphProto {
2 // The nodes in the graph , sor ted t o p o l o g i c a l l y .
3 repeated NodeProto node = 1 ;
4 }

LISTING 2.5: ONNX GraphProto definition

Using protobuf yields some disadvantages: Because the python object you get
from protobuf is a bunch of C methods you always have to check the proto file to
know what methods you can call. Furthermore it would be much more convenient
for a user to work with native types like float instead of the from protobuf given
general python-c-wrapper objects like FloatAttributeType.

For this and a multitude of other reasons we first parse the ONNX into a Deep500
pure Python object to further decouple from C.
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Chapter 3

Related Work

In this section we cover some related work that follows similar paths to resolve the
mentioned problems in the introduction.

3.1 High-level frameworks that are Backend independent

3.1.1 Keras

Keras [4] is a framework that concentrates on making the definition part of a neural
network as simple as possible. It offers many compositions already out of the box.
It supports different optimizers as well as distributed optimization over multiple
GPUs. Some of which only work with a specific backend. At the beginning Keras
offered 2 different backends Tensorflow and theano and started to support CNTK
recently. It allows to change between the backends via a configuration file.

3.2 Convert ONNX format to a specific Backend

3.2.1 Tensorflow-ONNX

Tensorflow-ONNX [18] is a project that allows you to do inference via Tensorflow
given an ONNX file.

3.2.2 PyTorch-ONNX

PyTorch [17] another deep learning framework has a part of ONNX integrated that
allows to execute a given ONNX file. Both Caffe2 and PyTorch are from Facebook.
They recently merged ( beginning 2018) the code into the same repository and allow
to switch the executing backend after the ONNX file is loaded. Since Facebook is
one of the driving factors behind ONNX and Caffe2 orients itself already strongly on
ONNX they will probably replace the internal representation they have with ONNX
at some point.

3.3 GraphPipe

At 15. August oracle published a blog post [7] where they introduced GraphPipe.
They describe it as a protocol and a collection of software designed to simplify ma-
chine learning model deployment and decouple it from framework specific imple-
mentations. They use a tool called flatbuffers [5] a similar tool as protobuf to save
the serialized models. And also offer with graphpipe-onnx and graphpipe-tf the in-
terface between the GraphPipe representation, Tensorflow and ONNX. Since they
understand ONNX they also can execute Caffe2 and PyTorch. Additionally to these
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services with GraphPipe you can run a neural network as it would be a server and
send tensors to it and get a tensor back in numpy for example.

3.4 ONNX alternatives

3.4.1 NNEF

Press release published 13. August. [8] NNEF from the khronos group [13] is a
readable framework independent format to represent neural networks. Very similar
to ONNX but readable. NNEF also wants to offer tools that optimize the graph
that NNEF represents. Of course there is an NNEF-exporter needed for each of the
frameworks as well as a parser that imports NNEF into a framework.
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Chapter 4

Design

This chapter gives a detailed overview of the chosen approach to solve the problems
already outlined in the previous chapters.

4.1 ONNX to Deep500

Relying on ONNX results in some disadvantages:

1. The high-performance protocol implemented in C++ handles everything over
strings. This makes it very hard to write understandable code. E.g. The field
op_type in NodeProto can be max, min, prod, add etc. Input and Output nodes
are defined with string keys and not object references.

2. The NodeProto protobuf message identifies the type of a node (the function
it represents, argmax, add, etc.) with the string field op_type. This means
that only a cumbersome inspection of this object provides further information
about the type, input, output and arguments of it.

3. Given the root node there is no predefined way to access all the nodes expect
from looping over it.

The deep500.parser package resolves these problems.
The parser is responsible to parse the provided ONNX model file and encapsulates
the model into a deep500 object. It is important that the complicated underlying
protocol level is abstracted away.
The problems with the nodes that are only identifiable with the op_string are solved
differently. A generator is created that according to the C++ schema defined by
ONNX generates a python class for each operation. This class has exactly the in-
puts, outputs and attributes defined in the ONNX catalogue and not just a list of
strings. Additionally to this class files a dictionary variable is initialized that can
map op_type to class. When the ONNX file is parsed each corresponding explicitly
typed object is created automatically for each node.

The visitor pattern was used to implement the access to the underlying node data
structure. The visitor for the nodes is auto-generated based on all possible nodes.
Only the visitor for the top-level objects was manually coded.

4.2 Backend

The basis functions φi ∈ Φ have to be executed fast because they’re called very often.
The high-performant implementation and execution of these functions is called the
backend.
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FIGURE 4.1: ONNX Parser

4.2.1 Concrete Backend

Problem: Currently, a framework is tightly coupled to a specific backend. This does
not allow to exchange and compare different backends with each other. Deep500
provides a standardized interface that allows to switch to a different backend with-
out changing any code.

The big picture is the following: For each backend there is a different visitor that
transforms the ONNX operation to the backend specific implementation. But it isn’t
as simple as that. Calling, training and generally handling the graphs created by the
visitors for the specific backends are different in each framework. Also the internal
state of a backend should not be held directly in a visitor. The visitor is thought
a stateless actor that transforms ONNX to the language of the backend. Because
of this reasons there is an extra Network class that encapsulates the internal state of
each network after transforming the ONNX model to a backend specific model. This
Network class encapsulates access to the outer world and abstracts away a specific
backend behind common methods (inference, backpropagation, gradients). There-
fore each backend is made up of at least one visitor and a network class.

FIGURE 4.2: High-level idea of backends

4.3 Deep500 API

4.3.1 Add custom operations to the network

As soon as the parsing is done we have an internal representation of the network
graph. This allows deep500 to provide the functionality to extend the graph by
custom operations, additional given basis functions or new output. To implement
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a custom basis function different from ONNX one has to implement the super class
Operation and extend the custom operations visitor. This is helpful because ONNX
is still in development and does not provide common loss functions out of the box.

4.3.2 Access to the internal state of a network

Only inference and backpropagation is not enough for a fully functioning neural
network. Often one is interested to extract, change and analyse specific values in a
neural network. An optimizer must be able to extract and change values while some
values are needed to generate specific metrics.
It makes sense to add this additional responsibility to the Network. So the Network
class offers two new methods for fetching values from a Network and feeding them
back in.

4.3.3 Reference optimizers

The algorithms that find the correct parameters for the neural network during train-
ing are called optimizers. The optimizers that work directly on the specific backend
graphs are . And the native optimizers are generally faster then optimizers we build
with help of the abstraction layer because we can’t profit fully from backend specific
optimization one could do. But there are cases when one cares less about speed and
more about:

1. Portability: Same optimizer with same hyperparameter runs on different frame-
works.

2. Correctness: Optimizer is easy to analyze, debug and to evaluate correctness
of an optimizer.

Deep500 has the naming convention of optimizers that follow portability and
correctness to call "reference implementation", because they should be considered as
a reference for faster implementations. They work on the access methods discussed
above provided by the Network class by extracting parameters from the network,
change them and put them back in. While optimizers work so similar deep500 offers
multiple interfaces to implement optimizers depending on the grade of control one
desires:

1. class Optimizer: This is a base class and has only the method train in which
everything has to be coded by hand.

2. class ThreeStepOptimizer: In the three step optimizer one has 3 points of
contact to interact with the network:

(a) New t: This indicates that a new input is happening. Some optimiza-
tion algorithms have some internal step counter (e.g. Adam) this can be
handled here.

(b) Pre inference and backpropagation: At this point parameters can be changed
before forward and backpropagation is happening.

(c) Update rule: At this point all gradients are calculated and based on this
gradients any update of the parameters is happening.

3. class OneStepOptimizer: The one step optimizers finally gives the least pos-
sible access to underlying mechanism. It only expects some update rule. A
common example for this case would be gradient descent containing the up-
date rule: xt+1 = xt − λ ∗ f ′(xt).
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4.3.4 Training a network with native optimizers

While reference optimizers are useful there are already implemented native optimiz-
ers in each of the popular deep learning frameworks. Of course it must be allowed
to still use them. Common native optimizer work directly on the graph and update
weights in an online fashion by adding operations that directly update the param-
eters. The class ViaGraphOptimizer has a method build, in which all the specific
update operations have to be added onto the graph. The build method works di-
rectly on the native graph objects and not with the networks possibility to add op-
erations, because the native optimizers expect the specific graph objects common to
its backend.

4.4 Distributed Training

One corner stone Deep500 is that it distributes the training of your network with
virtually no extra work from the side of an API user. This works based on the two
reference implementation classes: One step optimizer and three step optimizer. The
distributed optimizer works on these two classes to distribute new gradients and
parameters over MPI before or after the update rules are executed.

4.5 Metrics and Reports

Measuring and especially comparing results seems, at least for the author, difficult
in the current deep learning frameworks. Deep500 tries to make a step in the right
direction by giving the opportunity to test the different building blocks in isolation
and by providing extensive possibility to measure results during training and test-
ing.

4.5.1 Testing

Direct testing is used to verify that the specific blocks work isolated or in combina-
tion. ONNX offers around 900 tests by providing a model, input and the expected
output out of the box. The testing framework is in part built upon this ONNX tests
which can be reused with the network abstraction known from Deep500. The fol-
lowing testing possibilities exist:

1. Layer 0 (Low - level operations) inference: Measurements of the operations
implemented in the visitors for a) Correctness b) Accuracy c) Time. Using the
deep500 super classes gives all these measurements for free by reusing the tests
from ONNX.

2. Layer 0 (Low - level operations) backpropagation: As soon as it is verified
that inference works it makes sense to test the gradient calculation. This is
done by reusing the ONNX tests. First the gradient is calculated numerically
and then compared with the gradients calculated by backpropagation.

3. Layer 1 (Network inference and backpropagation): Tests are not limited to
models that contain only one operation. There are some ONNX tests that do
inference on big networks and therefore both inference and backpropagation
can be tested.
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4.5.2 Metrics

Testing alone is not enough. Monitoring, data generation and reporting are useful
tools that help analyze a network. By encapsulating the process of running and
training a network into a specific class called Runner, Deep500 introduces an event
system that triggers at specific points in time which allows to either generate data
or processing it. Some examples of such events are before and after optimizing, or
before and after running over a new epoch. With this event system we can test the
following two next layers:

1. Layer 1 (Network optimization and inference): The event system allows ac-
cess to all important and interesting events that happen during inference and
training in a network.

2. Layer 2 (Distributed optimization): The same event system that captures events
from local allows to capture events that run globally over distributed optimiz-
ers.

If a new method is developed one wants to know how it compares against other im-
plementations. When the Deep500 framework is used one gets automated reports
on different metrics. These reports make it easy to compare different implementa-
tions against each other. Following this it would be simple to create a website which
ranks different implementations against each other on a public ranking and makes
it possible to reference the reports.
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Chapter 5

Implementational Details

This section provides an in depth view into specific parts of the Deep500 implemen-
tation.

5.1 Parse ONNX to Deep500

As explained earlier the ONNX files are parsed into pure deep500 python objects.
All the classes and functions concerned with this are stored in deep500.onnx_parser.

1 def load_and_parse_model ( path : s t r ) −> OnnxModel :

LISTING 5.1: Parse onnx file into deep500.

The object OnnxModel contains an object of type OnnxGraph which holds the for
us important list of operations / nodes / base functions Φ in topological order. An
operation implements OnnxNode which is the deep500 equivalent of the ONNX Node-
Proto. To make information retrieval about ONNX as easy as possible the ONNX
operation documentation is available directly in the concrete deep500 python class.

The class Operation is abstract and all the concrete implementations of Opera-
tions correspond to all the possible building blocks that ONNX defines in its ONNX
operator catalogue. A specific example is the following "MaxPool" Operation. Which
is defined in the link: [12].

1 c l a s s MaxPool ( Operation ) :
2 " " "
3 MaxPool consumes an input tensor X and a p p l i e s max pooling across the
4 the tensor according to kernel s i z e s , s t r i d e s i z e s , and pad lengths .
5 max pooling c o n s i s t i n g of computing the max on a l l values of a
6 subset of the input tensor according to the kernel s i z e and downsampling

the
7 data i n t o the output tensor Y f o r f u r t h e r process ing . The output s p a t i a l

shape w i l l be fol lowing :
8 ‘ ‘ ‘
9 output_spat ia l_shape [ i ] = f l o o r ( ( input_spat ia l_shape [ i ] + pad_shape [ i ] −

k e r n e l _ s p a t i a l _ s h a p e [ i ] ) / s t r i d e s _ s p a t i a l _ s h a p e [ i ] + 1)
10

11 ∗ pad_shape [ i ] i s sum of pads along a x i s i
12 ‘ ‘ ‘
13

14 ‘ auto_pad ‘ i s a DEPRECATED a t t r i b u t e . I f you are using them current ly ,
the output s p a t i a l shape w i l l be fol lowing :

15 ‘ ‘ ‘
16 VALID : output_spat ia l_shape [ i ] = c e i l ( ( input_spat ia l_shape [ i ] −

k e r n e l _ s p a t i a l _ s h a p e [ i ] + 1) / s t r i d e s _ s p a t i a l _ s h a p e [ i ] )
17 SAME_UPPER or SAME_LOWER: output_spat ia l_shape [ i ] = c e i l (

input_spat ia l_shape [ i ] / s t r i d e s _ s p a t i a l _ s h a p e [ i ] )
18 ‘ ‘ ‘
19 And pad shape w i l l be fol lowing i f ‘SAME_UPPER‘ or ‘SAME_LOWER‘ :
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20 ‘ ‘ ‘
21 pad_shape [ i ] = ( output_spat ia l_shape [ i ] − 1) ∗ s t r i d e s _ s p a t i a l _ s h a p e [ i ] +

k e r n e l _ s p a t i a l _ s h a p e [ i ] − input_spat ia l_shape [ i ]
22 ‘ ‘ ‘
23 The output of each pooling window i s maximum number of elements exclude

pad .
24 " " "
25

26 def _ _ i n i t _ _ ( s e l f , input , output , name , op_type , domain , a t t r i b u t e s ,
doc_s t r ing ) :

27 super ( MaxPool , s e l f ) . _ _ i n i t _ _ ( input , output , name , op_type , domain
, a t t r i b u t e s , doc_s t r ing )

28 s e l f . auto_pad = s e l f . a t t r i b u t e s . get ( ’ auto_pad ’ )
29 s e l f . kernel_shape = s e l f . a t t r i b u t e s . get ( ’ kernel_shape ’ )
30 s e l f . pads = s e l f . a t t r i b u t e s . get ( ’ pads ’ )
31 s e l f . s t r i d e s = s e l f . a t t r i b u t e s . get ( ’ s t r i d e s ’ )
32 # Input data tensor from the previous operator ; dimensions f o r

image case are (N x C x H x W) , where N i s the batch s ize , C i s the
number of channels , and H and W are the height and the width of the
data . For non image case , the dimensions are in the form of (N x C x D1

x D2 . . . Dn) , where N i s the batch s i z e . Optionally , i f dimension
denotat ion i s in e f f e c t , the operat ion expects the input data tensor to

a r r i v e with the dimension denotat ion of [DATA_BATCH, DATA_CHANNEL,
DATA_FEATURE, DATA_FEATURE . . . ] .

33 s e l f . i_X = s e l f . input [ 0 ]
34 # Output data tensor from average or max pooling across the input

tensor . Dimensions w i l l vary based on various kernel , s t r i d e , and pad
s i z e s . Floor value of the dimension i s used

35 s e l f . o_Y = s e l f . output [ 0 ]
36

37 def accept ( s e l f , v i s i t o r , network ) :
38 super ( MaxPool , s e l f ) . accept ( v i s i t o r , network )
39 v i s i t o r . vis i t_maxpool ( s e l f , network )
40

41 @classmethod
42 def create_op ( c l s , i_X : s t r , o_Y : s t r , auto_pad : OnnxAttribute ,

kernel_shape : OnnxAttribute , pads : OnnxAttribute , s t r i d e s :
OnnxAttribute ) :

43 a t t r i b u t e s = {
44 ’ auto_pad ’ : auto_pad ,
45 ’ kernel_shape ’ : kernel_shape ,
46 ’ pads ’ : pads ,
47 ’ s t r i d e s ’ : s t r i d e s ,
48 }
49 re turn c l s ( [ i_X ] , [ o_Y ] , None , None , None , a t t r i b u t e s , None )

LISTING 5.2: deep500.onnx_parser.generated_operators.py

What generated_operators.py already indicates is worth noting again. The op-
erators are directly created from the ONNX schema definitions and the attribute
names are the same as in the documentation. Only the names for the specific input
and output fields are indicated by the prefix i_ for input resp. o_ for output.

5.2 Backends

If the reader is only concerned with the implementation of a backend one can check
out our jupyter tutorial in the deep500/tutorial folder.

The heart of a neural network framework is the implementation of the specific
basis functions. For example in the call in PyTorch F.relu(x), where x is trans-
formed with a PyTorch specific implementation of relu. But it could also be the case
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that when a convolution operation is called in either PyTorch or Tensorflow the same
cuDNN [14] implementation is used.

Deep500 provides a way of switching out specific implementations. A use case
may be that first the network is described in PyTorch because it is simple to debug
and later on in a productive environment should be executed with Tensorflow.

Behind the scenes this is done by 2 classes. The first one is the Network class. Its
purpose is to abstract away a common access to inference and backpropagation. The
second one is the OnnxBaseVisitor that decouples the access from the actual data of
the graph.

Network class

To get a first idea of the network class and see the UML diagram in figure 5.1.

FIGURE 5.1: UML Network

Visitor

The network class alone is not of much use. To do meaningful work the network
needs a graph over which it can run inference or backpropagation. In this regard the
visitor comes into play. The visitors will transform the ONNX file into the backend
specific graph. In the eager executed context the visitor will execute the correspond-
ing functions directly.
In the code the Network superclass provides a parse method which expects a visi-
tor. This visitor then runs over all the nodes and executes the corresponding visit
methods of the visitor. If a maxpool node is given in the nodes of the graph the cor-
responding visit_maxpool(op: MaxPool, network: Network) is called in the visitor and
this is the moment where the corresponding backend maxpool operation is added
or executed.

The listing 5.3 shows a simple implementation of the add method in a possible
backend. This is an eager executed backend. First the variables A and B are loaded
from the current state added and the result saved back into the network state.
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TABLE 5.1: Network class API

Network class API description im-
plement this methods to get own
backend

API Documentation

setup(self ) Setup the last point where initialization can
be made before inference or backpropagation.
Normally sessions, devices, input and output
dictionaries get setup.

teardown(self) Any open files and devices are closed here.

inference( self , input: Dict[ str , np.
ndarray]) −> Dict[str, np.ndarray]:

Inference runs forward on the network for a
given input. Normally this function consists
of filling the session with the current input
and then running the built network with ses-
sion.run(output, input) or something equivalent.
In eager execution the execution is directly
started at this point.

gradient( self ) −> List[Tuple[str , str ]] This returns a list of tuples with the field 1 as
name of the parameter and field 2 as the name
of the corresponding gradient. Normally this
is translated to a call like “‘tf.gradients“‘ from
Tensorflow.

inference_and_backprop(self, input: Dict[
str , np.ndarray]) −> Dict[str, np.ndarray
]:

First this method runs inference. Then if no
graph optimizer is directly optimizing over
graph operations this method fills the gradi-
ents that are available over the above gradient
method.

1 c l a s s M i n i m a l i s t i c V i s i t o r ( OnnxBaseVisitor ) :
2

3 def v i s i t _ a d d ( s e l f , op : Add, network : Minimalist icBackend ) :
4 A = network . v a r i a b l e s [ op . i_A ]
5 B = network . v a r i a b l e s [ op . i_B ]
6

7 C = A + B
8 network . v a r i a b l e s [ op . o_C ] = C

LISTING 5.3: deep500.backend.minimalistic.mini_backend.py

The listing 5.4 shows a simple implementation of inference in a network. First up-
date the internal variable state with the new input then run the visitor which in eager
execution directly executes the corresponding operations. Lastly return the wanted
output.



5.2. Backends 21

1 c l a s s Minimalist icBackend ( NetworkBackend ) :
2

3 def i n f e r e n c e ( s e l f , input : Dict [ s t r , np . ndarray ] ) −> Dict [ s t r , np .
ndarray ] :

4 s e l f . setup ( )
5 s e l f . v a r i a b l e s . update ( input )
6 s e l f . _parse ( v i s i t o r = M i n i m a l i s t i c V i s i t o r ( ) )
7

8 output_dic t = { }
9 f o r name in s e l f . net_output :

10 output_dic t [name] = s e l f . v a r i a b l e s [name]
11 re turn output_dic t

LISTING 5.4: deep500.backend.minimalistic.mini_backend.py

If all the methods in the visitor are implemented from the OnnxBaseVisitor super
class one would have a fully functioning deep learning framework since all the op-
timization, reporting and distributed training is provided by deep500.
The interplay between the different components are displayed in figure 5.2.
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5.2.1 Optimization

Reference Optimization

To guarantee the correctness of an optimizer it is advantageous going from a simple
and more slow implementation to a more sophisticated and fast one. The simple
and slow ones can be implemented and therefore debugged whereas the fast ones
are implemented directly with basis operations in the graph and are (depending
on the backend) harder to debug and to get right. Contrary to the design section
here the optimizers are presented from a bottom up approach. First the one step
optimizer then the three step optimizer and at last the base class optimizer which
gives full control over every aspect of the optimizer.

1 step optimizer

Many of the current established gradient optimizers update the weights according
to a specific rule after forward & backpropagation has been run. Such an optimizer
has the interface in 5.5

1 c l a s s UpdateRuleOptimizer ( ThreeStepOptimizer ,
2 metaclass=abc . ABCMeta) :
3 def update_rule ( s e l f , grad , old_param , param_name ) :
4 pass

LISTING 5.5: deep500.backend.optimizer.py

And gradient descent with its simple update rule: xt+1 := xt − γ∇ f (xt), γ > 0
is then implemented as simple in the update rule optimizer seen in 5.6.

1 c l a s s GradientDescentReferenceImplementation ( UpdateRuleOptimizer ) :
2

3 def _ _ i n i t _ _ ( s e l f , network : NetworkBackend , l r = 0 . 1 ) :
4 super ( GradientDescentReferenceImplementation , s e l f )
5 . _ _ i n i t _ _ ( network )
6 s e l f . l r = l r
7

8 def update_rule ( s e l f , grad , old_param , param_name ) :
9 re turn old_param − s e l f . l r ∗ grad

LISTING 5.6: deep500.backend.optimizer.py

3 step optimizer

Some of the more elaborate optimizers work in a 3 step fashion.

1. New input callback which is used to updating some internal tracking informa-
tion e.g. update steps.

2. Prepare parameters for the network before running it.

3. Update parameters after running forward & backpropagation on the network.

The presented superclass in listing 5.7 executes the callbacks exactly as described in
the enumeration.
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1 c l a s s ThreeStepOptimizer ( Optimizer , metac lass=abc . ABCMeta) :
2

3 def new_input ( s e l f ) :
4 pass
5

6 def prepare_param ( s e l f , param_name ) :
7 pass
8

9

10 def update_rule ( s e l f , grad , old_param , param_name ) :
11 pass

LISTING 5.7: deep500.backend.optimizer.py

Optimizer

If this granularity is not enough there is always the possibility to implement the
optimizer superclass which both the one step optimizer and the three step optimizer
implement directly. This gives the opportunity to implement a fully customized
optimizer by hand.
The listing 5.8 shows the base optimizer class. It expects only to implement the train
method which should optimize the parameters according to some input: (xi, yi) ∈
(X ×Y).

1 c l a s s Optimizer ( metac lass=abc . ABCMeta) :
2 def _ _ i n i t _ _ ( s e l f , network : Network , l o s s : s t r = ’ l o s s ’ ) :
3 s e l f . network = network
4 s e l f . l o s s = l o s s
5

6 def t r a i n ( s e l f , inputs ) :
7 pass

LISTING 5.8: deep500.backend.optimizer.py

Usage

Of course the usage should be as simple as possible shown in listing 5.9.

1 optimizer = GradientDescentReferenceImplementation ( network )
2

3 f o r inp in inputs :
4 l o s s = optimizer . t r a i n ( inp )

LISTING 5.9: deep500.examples.train_mnist.py

Training a network with native optimizer

Instead of reading values out of the network and applying a simple optimizer, there
are faster ways of doing optimization. One option is to implement the used opti-
mization algorithms directly with basis functions.
This graph optimizer implements the base optimizer interface and extends it with
the build method which gives the possibility to add methods directly to the graph.
In listing 5.10 the graph optimizer is displayed and in listing 5.11 a native Caffe2
momentum optimizer is shown.
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1 c l a s s GraphOptimizer ( Optimizer , metac lass=abc . ABCMeta) :
2

3 def _ _ i n i t _ _ ( s e l f , network ) :
4 super ( GraphOptimizer , s e l f ) . _ _ i n i t _ _ ( network )
5 s e l f . o p t i m i z e r _ b u i l t = Fa l se
6

7 @abc . abstractmethod
8 def bui ld ( s e l f ) :
9 pass

LISTING 5.10: deep500.backend.via_graph_optimizers.py

1 c l a s s Caffe2MomentumOptimizer (Momentum) :
2

3 def bui ld ( s e l f ) :
4 with core . DeviceScope ( s e l f . network . device_opt ion ) :
5 # optimizer here i s j u s t the c a f f e i n t e r n a l l i b r a r y
6 # t h a t provides the
7 # opt imizat ion operat ions added to the graph
8 optimizer . build_sgd ( s e l f . network . train_model ,
9 b a s e _ l e a r n i n g _ r a t e = s e l f . l r ,

10 momentum= s e l f . momentum
11 )

LISTING 5.11: deep500.backend.caffe2_graph_optimizers.py
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5.3 Metrics

There is need for some kind of feedback and reporting from the training and testing
loop. This can get messy when everything is packed into this loop construct. The
next sections explain how the Deep500 metrics abstraction works in detail and how
to use it.

5.3.1 Dataset

Before diving into the metrics directly it is reasonable to start with the dataset ab-
straction. A Dataset expects an object of type Input. An Input is just a class built
from a node name and its corresponding data. Data demands only that __len__ and
__next__ is overridden. Commonly lists or numpy [9] arrays are used as data.

1 c l a s s Input :
2 def _ _ i n i t _ _ ( s e l f , node_name : s t r , data : Data ) :

LISTING 5.12: deep500.utils.dataset.py

5.3.2 Runner

Having a dataset you can use the runner class with which the whole power of the
metrics framework comes for free. First create the runner by one of the provided
factory methods. The base constructor of the runner class is shown in listing 5.13.

1 c l a s s Runner :
2 def _ _ i n i t _ _ ( s e l f ,
3 t r a i n _ s e t : ADataset ,
4 t e s t _ s e t : ADataset ,
5 network : Network ,
6 optimizer : Optimizer ,
7 network_output : s t r ,
8 t i c k e r s : L i s t [ BaseTicker ] ,
9 summary_ticker : RunnerTicker ) :

LISTING 5.13: deep500.metrics.runner.py

5.3.3 Tickers

In the design section it is claimed that there is an event system with which it should
be possible to catch all the relevant events that are of interest for any use case. The
following events are catched in this order:

1. Before run over epochs: Initialize indices, files, etc.

2. Before run over epoch: Increment epoch counter.

3. Before run over training set: Shuffle training data.

4. Before optimizer step: Start stop watch.

5. After optimizer step: record optimization time, save loss value.

6. Abort condition after optimizer, if it returns true this event runner will abort: Is
loss nan abort gracefully with records of last gradients so is is easier debugging
is possible.
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7. after run over training set: reset training set. Write plots specific to this training
epoch.

8. Before run over test set: shuffle test data, reset counters.

9. Before inference step: start time watch.

10. After inference step: record inference time, record MSE with true value or ac-
curacy in classification case.

11. After run over test set: reset test set. Write plots specific to this run over test
set.

12. After run over epoch: Report average inference time / optimization time for
this epoch.

13. Abort condition after test, stops training/testing gracefully if condition is true:
After some

14. After run over epochs: Write CSV file with all the possible data that has been
gathered.

All these methods are then reflected into the BaseTicker class. Some natural use case
that occurs almost always in practice is the one of calculating the accuracy of a model
while training. In some non deep500 framework one would do the following as seen
in listing 5.14. This is okay as long as only accuracy as data and printing to stdout
is needed. But often there are a lot of interesting statistics to be measured: avg. loss,
avg. time inference / optimizing, current samples (progress bar), etc. as well as
multiple out sources, e.g. print to stdout, write into a CSV file.

1 c o r r e c t s = 0
2 f o r input , y in d a t a s e t :
3 y_pred , l o s s = network . i n f e r e n c e ( input )
4 c o r r e c t s += np . sum( np . argmax ( y_pred , a x i s =0) == y )
5 p r i n t ( ’ accuracy : { } ’ . format (100/ len ( d a t a s e t ) ∗ ( c o r r e c t s ) ) )

LISTING 5.14: non deep500 accuracy example

With deep500 it is a lot simpler to handle many use cases. This is achieved by sepa-
rating data generation and usage into separate classes that can be enabled if needed.
For a deep500 specific example see listing ??.

5.3.4 SummaryTicker

SummaryTicker is the base class used for data generation. Its event should change
the JobSummary object that gets passed from event to event. Deep500 has two sum-
mary tickers. One for the default case in which common data is recorded and one
which does time recordings which could possibly slow down a network. The default
summary ticker that measures among other data, the accuracy and saves it on the
current job object, is shown in listing 5.15.
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1 c l a s s SummaryTicker ( RunnerTicker ) :
2

3 def _ a f t e r _ i n f e r e n c e _ s t e p ( s e l f , job_summary : JobSummary , runner , inp ,
output ) :

4 y_corr = inp [ runner . t e s t _ s e t . label_node ]
5 y_network = output [ runner . network_output ]
6

7 job_summary . current_summary . wrong += np . sum( y_corr != np . argmax (
y_network , a x i s =1) )

LISTING 5.15: deep500.metrics.summary_ticker.py

Reporting to the console is then done in a data processing ticker. The accuracy re-
porting case can be seen in listing 5.16.

1 c l a s s AccuracyTicker ( BaseTicker ) :
2 def after_run_over_epoch ( s e l f , job_summary : JobSummary , epoch ) :
3 p r i n t ( ’ epoch : { } | accuracy : {}% ’
4 . format ( epoch , job_summary . current_summary . accuracy ) )

LISTING 5.16: non deep500 accuracy example

5.3.5 Metrics UML

Before looking at some use cases a part of the UML Design is show in figure 5.4 to
get some idea of how everything is connected. It is concentrated on the relationship
between the classes. Some less important fields and connections were intentionally
left out.

FIGURE 5.4: Metrics UML
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5.3.6 Use Cases

In this section the flexibility of the ticker system is shown by displaying two practical
use cases.

Record inference and optimization times

Recording times can be slow especially if it is done for each inference and optimiza-
tion step and when all of it is added to one big list. This will only be necessary in
special cases. Such a time tracking ticker is shown in listing 5.17.

1 c l a s s SummaryTickerRecordInferenceTime ( RunnerTicker ) :
2 def _ _ i n i t _ _ ( s e l f ) :
3 super ( SummaryTickerRecordInferenceTime , s e l f )
4 . _ _ i n i t _ _ ( p a r e n t _ t i c k e r =SummaryTicker ( ) )
5

6

7 def _ b e f o r e _ i n f e r e n c e _ s t e p ( s e l f , job_summary : JobSummary ) :
8 s e l f . t i m e _ b e f o r e _ i n f e r e n c e = time . time ( )
9

10 def _ a f t e r _ i n f e r e n c e _ s t e p ( s e l f ,
11 job_summary : JobSummary ,
12 runner ,
13 inp ,
14 output ) :
15 used_time = time . time ( ) − s e l f . t i m e _ b e f o r e _ i n f e r e n c e
16 job_summary . current_summary . t ime_used_inference . append ( used_time )

LISTING 5.17: deep500.metrics.summary_ticker.py

A website ticker

This use case shows a website that offers the possibility to upload an ONNX file
choose a specific dataset and a button that starts training the network on the server.
The ticker system is then used to get information back from the server to the client
that started the training. The data generating tickers need no change. A new ticker
is created for the processing side where data gets transformed from python objects
into JSON strings and sent back to the client. Therefore the website needs absolutely
no domain knowledge to process the information. In listing 5.18 the after optimizer
step event is shown as an example on how the data gets transformed into JSON and
sent back to the client.

1 c l a s s WebRunnerTicker ( BaseTicker ) :
2

3 def a f t e r _ o p t i m i z e r _ s t e p ( s e l f , job_summary : JobSummary , runner , l o s s ) :
4 s e l f . current_msg [ ’ type ’ ] = 1
5 s e l f . current_msg [ ’ current_bar ’ ] += 1
6 s e l f . current_msg [ ’ l o s s ’ ] = f l o a t ( l o s s )
7 s e l f . queue . put ( j son . dumps( s e l f . current_msg ) )

LISTING 5.18: deep500.web.web_runner_ticker.py

And in figure 5.5 a picture from the web site can be seen. At the top of the image
is a form where an ONNX model can be uploaded to be run on the server and at the
bottom a progress bar that gets updated according to data from the server.
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FIGURE 5.5: Image of web interface

5.4 Non Runner Metrics

Not everything interesting and not every metric can be generated by the runner. The
metrics of the framework can roughly be splitted into 3 parts:

1. Layer 0: The specific operations: E.g. textttMin, Max, Sum, Relu.

2. Layer 1: The whole network specifically inference and training of a network.

3. Layer 2: Distributed training and inference for a network over multiple nodes.

The runner can test really thorough layer 1 and layer 2. Especially testing the whole
inference & backpropagation process. But isolating the specific operations is not pos-
sible. Also the case of comparing two optimizers step by step is difficult. Deep500’s
way of solving these problems is discussed in the next two subsections.

Layer 0 Testing specific operations

ONNX offers the option of testing specific operations in a simple way. It provides
python data or protobuf data as input and then python data as given output.
To test specific operations one can use one of four metrics:

1. Pass / Fail test
The ONNX testing framework is encapsulated into the class: deep500.onnx_parser.TestBackend
but this does concern an API user only via a call to this test backend.

1. Initialize the test backend with the backend of choice.

2. Include the tests to run.

3. Update the global available tests

4. Run main

This then looks as simple as in listing 5.19 and is commonly copied from another
backend. And only the name of the backend class is replaced.
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1 backend_test = onnx . backend . t e s t . BackendTest (
2 TestBackend ( TensorflowBackend ) ,
3 __name__ )
4 backend_test . inc lude ( ’_gemm_ ’ )
5

6 g l o b a l s ( ) . update ( backend_test . enable_repor t ( ) . t e s t _ c a s e s )
7

8 i f __name__ == ’ __main__ ’ :
9 u n i t t e s t . main ( )

LISTING 5.19: deep500.tests.onnx.test_onnx_full_backend_tf.py

The generated output is shown in listing 5.20.

1 s s s s s s . . . . s s s s s s
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Ran 862 t e s t s in 0 .830 s
4

5 OK ( skipped =846)

LISTING 5.20: pass/fail test output

where **s** stands for skipped and **.** stands for correct and **E** for error.

2. Accuracy
It is possible that accuracy is sacrificed for performance which means that a pass /
fail test is not enough. A simple call to deep500.metrics.layer_level_metrics .generate_-
accuracy_metrics.run_metrics() generates a CSV file with min and max differences in a
number, vector, matrix or tensor. A sample call that tests the operations in the Caffe2
network is shown in listing 5.21.

1 i f __name__ == ’ __main__ ’ :
2 run_metrics ( Caffe2Network , ca tegor ies_exc luded = [ ] ,
3 s p e c i f i c _ t e s t _ e x c l u d e d =[
4 ’ vgg19 ’ ,
5 ’ z fnet512 ’ ] ,
6 prefix_name=" caffe2_backend_big " )

LISTING 5.21:
deep500.metrics.layer_level_metrics.generate_accuracy_metrics.py

The upper part of the generated CSV file is show in table 5.2.

Upper part of test accuracy generated csv file

Test name min_diff max_diff

test_abs_cpu 0.0 0.0
test_abs_cuda 0.0 0.0
test_add_bcast_cpu -3.9671757221221924 1.8805294036865234
test_add_bcast_cuda -3.9671757221221924 1.8805294036865234
test_add_cpu -3.9671757221221924 3.5368399620056152
test_add_cuda -3.9671757221221924 3.5368399620056152

TABLE 5.2: Output test accuracy

3. Time
Isolated time for an operation is an important measurement. This is implemented
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in the same manner as in the accuracy case. But instead of calling generate_-
accuracy_metrics, deep500.metrics.layer_level_metrics .generate_time_met-
rics is called. Also to get a more accurate measurement, multiple runs can be made
and are averaged. The generated CSV file is shown in table 5.3.

Upper part of test time generated CSV file

Test name run_1 run_2 . . . avg

test_abs_cpu 0.0006086826324462891 0.0003643035888671875 . . . 0.00040569305419921873
test_abs_cuda 0.12066340446472168 0.0005109310150146484 . . . 0.024487924575805665
test_add_bcast_cpu 0.0023500919342041016 0.00046539306640625 . . . 0.000833892822265625

TABLE 5.3: Time output operator test

4. Gradient
Checking if the backpropagation algorithm calculates the gradients correctly is pos-
sible by calling deep500.metrics.layer_level_metrics.gradient_checking.py. Where
a call possibly can look like in listing 5.22 and the top five rows of the output is seen
in listing 5.23.

1 i f __name__ == ’ __main__ ’ :
2 # f i l t e r funct ion re turns t rue i f t e s t should be executed
3 def t e s t _ f i l e ( f i l e ) :
4 re turn ’ abs ’ in f i l e or ’pow ’ in f i l e
5

6 run_metrics ( PyTorchNetwork , t e s t _ f i l e = t e s t _ f i l e , ca tegor ies_exc luded
= [ ] , prefix_name=" pytorch " )

LISTING 5.22:
deep500.metrics.layer_level_metrics.generate_checking.py

1 testname : tes t_pow_bcast_array | param gradient d i f f : no params
2 testname : tes t_pow_bcast_array | input gradient d i f f :

0 .0004947619240716238
3 testname : te s t _ po w_ b ca s t _ sc a l a r | input gradient d i f f :

0 .00025031224312801727
4 testname : te s t _ po w_ b ca s t _ sc a l a r | param gradient d i f f : no params
5 testname : test_pow | input gradient d i f f : nan
6 testname : test_pow | param gradient d i f f : no params

LISTING 5.23: Gradient checking output

Layer 1: Comparing 2 optimizers step by step

When building a new optimizer it could be interesting to compare it with another
one step by step. There is a method call that provides exactly that. Given two opti-
mizers and a dataset they are compared step by step and the norm of the difference
of the parameters is written to a CSV file. While the call and an example can be
seen in deep500.metrics.optimizer.bench_optimizer.py the CSV output for a simple lin-
ear model with two parameters is shown in table 5.4.

The output of 5.4 is generated by comparing gradient descent and adam on a linear
regression model. Interestingly the difference between the first parameter which is
the matrix parameter and the second one, the vector parameter, seems to increase
much slower.
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Csv file generated after 5 steps, the numbers 1 and 2 represent parameters in the network

1 2

0.5360693 0.02644828
0.92403895 0.047031283
1.2599208 0.0665448
1.305804 0.06864658
1.3557968 0.07171327

TABLE 5.4: Csv file generated after 5 steps

5.5 Distributed Training

A feature we’re proud of is the simple to use distributed training of neural networks
in a multitude of different ways.

5.5.1 Distributed Reference Implementation

First again the slow but simple implementation that builds upon Deep500’s opti-
mizer reference implementation.
The common idea is the following: The same neural network is running on multiple
isolated processes (nodes) with each having a unique id. At certain points in time,
e.g. before or after running the local optimizer, the nodes communicate with each
other to either get in agreement over the current gradient or parameter. The whole
communication network is built with MPI [15]. This framework allows for simple
communication of data with other groups of nodes or a specific one, at any point.
Commonly one transmits weights or gradients, but is not limited to that.
This simple concept gives rise to a multitude of different algorithms. Deep500 im-
plements several of them as seen in table 5.5. These are all based upon the un-
derlying class textitCommunicationNetwork, which can be used to implement own
distributed algorithms. A more in depth analysis of the implemented distributed
optimizers can be found in [2].

If one is interested in implementing its own distributed optimizer it is certainly
worth building upon the CommunicationNetwork class, which abstracts away MPI.
The API of this class is shown in 5.6.

Equipped with the knowledge of the API it is simple to build a custom distributed
optimizer. All that has to be done, is to implement the train method which takes
some input object input : (xi, yi) ∈ (X ×Y). Commonly this method executes infer-
ence and backpropagation locally in order to then update the resulting gradient with
all other calculating nodes, before applying it to the local non distributed optimizer.
An example of this is shown in listing 5.24.
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Distributed optimizers imple-
mented in deep500

Classname Functioning

ConsistentParameterServer In a consistent parameter server all gradients
are gathered at the parameter node and when
every gradient is gathered it calculates the
mean of it runs an optimization step and dis-
tributes the new parameters back. Seen in fig-
ure 5.6.

InconsistentParameterServer In the inconsistent case as soon as a gradient is
calculated on one of the nodes it gets sent to the
parameter server where according to the opti-
mizer the new param gets calculated and sent
back. The server does not wait for any other
gradients. It immediately calculates new gradi-
ents. Seen in figure 5.7.

ConsistentDecentralized In the consistent decentralized case there is
synchronous communication between all active
nodes. It uses the common known allreduce
operation from distributed computing to calcu-
late the mean over all gradients. The optimizer
update rule is calculated for each node by itself.
Seen in figure 5.8.

ConsistentNeighbors It works in the same way as consistent decen-
tralized with one important difference: Instead
of calling the allreduce operation across all
nodes it restricts itself on its immediate neigh-
bors. In this method there is less communica-
tion than in the others.

TABLE 5.5: Reference Distributed optimizers in Deep500

1 c l a s s Cons i s tentDecentra l ized ( Distr ibutedOptimizer ) :
2

3 def t r a i n ( s e l f , inputs ) :
4 s e l f . base_optimizer . new_input ( )
5 [ s e l f . base_optimizer . prepare_param ( param )
6 f o r param in s e l f . network . get_params ( ) ]
7 output = s e l f . network . inference_and_backprop ( inputs )
8 gradients = s e l f . network . gradient ( )
9 f o r param_name , grad_name in gradients :

10 param , grad = s e l f . network
11 . f e t c h _ t e n s o r s ( [ param_name , grad_name ] )
12 # Here the network i s c a l l e d and does an a l l reduce
13 grad = s e l f . communication . s y n c _ a l l ( grad )
14

15 param = s e l f . base_optimizer
16 . update_rule ( grad , param , param_name )
17 s e l f . network . feed_tensor ( param_name , param )
18

19 re turn output

LISTING 5.24: deep500.distributed.distributed_optimizer.py



36 Chapter 5. Implementational Details

FIGURE 5.6: Consistent Parameter Server

FIGURE 5.7: Inconsistent Parameter Server

FIGURE 5.8: Inconsistent Decentralized

Usage in code

Assuming MPI and multiple GPUs are available on a computer then Deep500 has
an easy way to start n MPI available nodes as seen in listing 5.25.
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distributed communication API in
Deep500

Classname Functioning

gather_at_ps(self , tensor) Gathers all the arrays at node with
rank 0.

sync_all_with_root(self , tensor) Rank 0 forces its tensor to all the
nodes.

send_to_root(self , tensor, tag) Send from rank != 0 to rank 0.
wait_for_any_slave(self) Waits for any slave to send some

tensor to the rank 0. Returns a ten-
sor and a status (tag, slave id).

send_to_specific_slave( self , tensor, dest,
tag)

Sends the specific numpy tensor to
the node with id "dest" and some
tag. Most of the time the tag is to
identify the parameter to update.

sync_all( self , tensor, reduce_func=MPI.
SUM)

Allreduce over all nodes according
to specific function.

wait_for_root(self ) Wait for a response from node with
rank 0.

reduce_from_neighbors(self, tensor,
reduce_func=MPI.SUM)

Only make the allreduce over the
immediate neighbors.

TABLE 5.6: Distributed communication API Deep500

1 i f __name__ == " __main__ " :
2 n = 3
3 i f mpi_fork ( n ) == " c h i l d " :
4 p r i n t ( " c h i l d process one of the nodes " )
5 runner ( )
6 e l s e :
7 p r i n t ( " main process t h a t c a l l e d mpi_fork " )

LISTING 5.25: deep500.utils.mpi_helper.py

The main process itself is no MPI process and gets control back as soon as all the n
MPI child processes are finished.
Another way to start the MPI process would be normally via the mpiexec -np 3 ...
command.
Then in the child processes sticking the base optimizer into a distributed optimizer
distributes the optimization process as seen in listing 5.26.

1 # from
2 optimizer = MomentumReferenceImplementation ( network )
3

4 # to
5 optimizer = Consis tentParameterServer (
6 MomentumReferenceImplementation ( network ) )

LISTING 5.26:
deep500.examples.distributed.distributed_train_mnist_reference.py

The simplicity that we get from this approach has its cost in its slow performance
compared with the native optimizers.
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5.5.2 Distributed Native Optimizers

One way to support faster communication is to implement operations directly in
some fast native code of the specific frameworks that are used.
These native distributed optimizers still use GraphOptimizer as the same superclass
as in the non distributed case. This can be seen in listing 5.10.
It is therefore the same as in the non distributed case where the right operations have
to be added to the graph and these operations have to have some native implemen-
tation backing them up when called from python.
Deep500 implements two native distributed optimizers presented in the next two
subsections.

Horovod Distributed Optimizer

Horovod [6] is a distributed optimizer developed by Uber for Tensorflow & Py-
Torch. With our optimization layer it is simple to add this specific native optimizer
to Deep500. The listing 5.27 shows the full code needed to add it to Deep500. After
adding its support to Deep500 it can be used as any other distributed optimizer just
only for Tensorflow and PyTorch.

1 c l a s s HorovodDistributedOptimizer ( GraphOptimizer ) :
2 def _ _ i n i t _ _ ( s e l f , graph_optimizer : GraphOptimizer ,
3 comm=CommunicationNetwork ( ) ) :
4 super ( HorovodDistributedOptimizer , s e l f )
5 . _ _ i n i t _ _ ( graph_optimizer . network )
6 s e l f . communication = comm
7 s e l f . parameter_optimizer = graph_optimizer
8

9 def bui ld ( s e l f ) :
10 opt : t f . t r a i n . Optimizer = s e l f . parameter_optimizer . bui ld ( )
11 hvd . i n i t ( )
12 s e l f . network . s e s s i o n _ c o n f i g . gpu_options . v i s i b l e _ d e v i c e _ l i s t
13 = s t r ( hvd . l o c a l _ r a n k ( ) )
14 opt = hvd . Distr ibutedOptimizer ( opt )
15 hooks = [ hvd . BroadcastGlobalVariablesHook ( 0 ) ]
16 s e l f . network . add_hooks ( hooks )
17 re turn opt

LISTING 5.27:
deep500.examples.distributed.tf.tf_distributed_optimizer.py

First the local optimizer is called to build and then Horovod adds its distribution
operations on top of it.

Caffe2 Distributed Optimizer

For demonstration purposes and because the Caffe2 distributed framework is im-
plemented very complicatedly Deep500 has built its own Caffe2 native distributed
optimizer. The operations are implemented in native Caffe2 code and shown in table
5.7. They orient themselves at the CommunicationNetwork class from the reference
implementation.
The operations are implemented in cpp_operators/caffe2/mpi_operations/mpi_operations.cc.

With this operations there are 3 native caffe2 optimizers provided:

1. Caffe2ConsistentParameterServer

2. Caffe2ConsistentDecentralized
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Deep500 native Caffe2
distributed operations

Classname Functioning

DMpiSend(dest, tag) Same as send_to_specific_slave in numpy case.
DMpiRecv (source, tag) If no source and no tag is given it waits for any

source and any tag. Same as in wait_for_any_-
slave in numpy case.

DMpiBroadcast Root synchronizes its tensor with all the oth-
ers. Sync_all_with_root is the equivalent case
in Deep500 communications class.

DMpiGather Gathers all the tensors of the nodes at the root.
Same as gather_at_ps for the numpy case.

DMpiAllReduce Normal allreduce operation known from mpi.
Same as allreduce in the numpy case. As reduce
function MPI.Sum is used.

DMpiAllReduceMean Allgather returns a matrix of dimensions n x
d. Reduce additionally applies a reduce func-
tion. Some possible reduce functions are: Sum,
Product, Max, Min, Or, And. Many of the al-
gorithms use only need the reduced mean of
this matrix dimension d. This function makes
this extra additional step compared to the nor-
mal DMpiAllReduce operation and takes the
mean after the allreduce operation by divid-
ing through the world size.(sum_allreduce_-
vector/num_of_nodes). The numpy equivalent
is the sync_all operation from Deep500 commu-
nication network.

MpiReduceMean This operations reduces to a specific node e.g.
root node.

TABLE 5.7: Caffe2 distributed operation

3. Caffe2ConsistentNeighbors

These three optimizers also implement the GraphOptimizer interface and just add the
operations to the graph. Most of the code needs to be written to ensure that data is on
the cpu before it gets transmitted. The implementation of Caffe2ConsistentParameterServer
is seen in 5.28.
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1 c l a s s Caffe2Consis tentParameterServer ( GraphOptimizer ) :
2 def _ _ i n i t _ _ ( s e l f ,
3 graph_optimizer : GraphOptimizer ,
4 comm=CommunicationNetwork ( ) ) :
5 super ( Caffe2Consis tentParameterServer , s e l f )
6 . _ _ i n i t _ _ ( graph_optimizer . network )
7 s e l f . communication = comm
8 s e l f . parameter_optimizer = graph_optimizer
9

10 def bui ld ( s e l f ) :
11 s e l f . parameter_optimizer . bui ld ( )
12 s e l f . b u i l d _ c o n s i s t e n t _ p a r a m e t e r _ s e r v e r _ g r a d i e n t s (
13 s e l f . network ,
14 s e l f . communication )
15

16 def b u i l d _ c o n s i s t e n t _ p a r a m e t e r _ s e r v e r _ g r a d i e n t s (
17 s e l f ,
18 network : Caffe2Network ,
19 comm_network : CommunicationNetwork ) :
20 _load_custom_dll ( )
21

22 gradients = network . gradient ( )
23

24 ptr = comm_network . get_comm_numpy_ptr ( )
25 network . feed_tensor (
26 "mpi_comm" ,
27 ptr ,
28 device_opt ion=core . DeviceOption ( caf fe2_pb2 .CPU) )
29

30

31 # copy gpu data to cpu to make mpi
32 i f network . is_cuda :
33 f o r ( param_name , grad_name ) in gradients :
34 grad_name_from = grad_name + " _cpu "
35 i f network . is_cuda e l s e grad_name
36 with core . DeviceScope ( network . device_opt ion ) :
37 # we copy on the same device on where mpi_comm i s
38 network . train_model . EnsureCPUOutput (
39 [ grad_name ] , grad_name_from )
40

41 # make mpi
42 f o r ( param_name , grad_name ) in gradients :
43 grad_name_from = grad_name + " _cpu "
44 i f network . is_cuda e l s e grad_name
45 with core . DeviceScope ( core . DeviceOption ( caf fe2_pb2 .CPU) ) :
46 # now we use the copied tensor as input
47 network . train_model .
48 DMpiReduceMean (
49 [ grad_name_from , "mpi_comm" ] ,
50 grad_name + " _ bu f f e r " )
51 network . train_model . DMpiBroadcast (
52 [ grad_name + " _ bu f f e r " , "mpi_comm" ] ,
53 grad_name_from )
54

55 # we have to copy back the mpi ’d tensor i f we ’ re cuda
56 i f network . is_cuda :
57 f o r ( param_name , grad_name ) in gradients :
58 with core . DeviceScope ( network . device_opt ion ) :
59 # we copy on the same device on where mpi_comm i s
60 network . train_model . CopyFromCPUInput (
61 [ grad_name + " _cpu " ] ,
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62 grad_name )

LISTING 5.28:
deep500.distributed.cf2.caffe2_distributed_optimizer.py
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Chapter 6

Benchmarking and Experiments

Deep500 provides a lot of tools to generate metrics automatically. Data and plots
alone are only the first step to a thorough investigation of an algorithm. To assist
with next steps, deep500 offers some tools and guidance. The tools are presented
and explained according to tests that we have conducted ourselves.

6.1 Benchmarking

It was discussed in the metrics section how to generate plots and data with already
provided metrics or implement new ones. But it gets really interesting when one
compares different optimizers, backends and distributed optimization algorithms.
Deep500 provides methods that can read the generated CSV files and generates new
plots out of it.
The plots can be generated very easily by using the code seen in listing 6.1.

1 i s _ g r a d i e n t _ d e s c e n t = lambda f : ’ gradientdescent ’ in f . lower ( )
2 g e n e r a t e _ p l o t s ( fo lder , i s_gradient_descent , ’ only_graddesc ’ )

LISTING 6.1: deep500.examples.benchmarking.generate_vs_plots.py

The method call in listing 6.1 generates 4 plots. It takes the path to the CSV file folder
as input and also a lambda function to filter out the CSV files The last argument is
just the title of the plots.
The plots generated are the following:

1. Samples vs Accuracy plot.

2. Time in seconds vs Accuracy plot.

3. Samples vs Loss plot.

4. Time in seconds vs Loss plot.

6.2 Experiments

Experiment setting:

1. Dataset: Cifar10

2. Model: Resnet50

3. Backends: Tensorflow, Caffe2

4. Optimizers: Data generated to every possible optimizer
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5. Distributed: Run on 1 GPU non distributed case and 3 GPUs in distributed
setting

6. The whole benchmarking code is ready to be run in:
deep500.examples.benchmark.non_distributed resp.
deep500.examples.benchmark.distributed

The experiments are given to showcase the possibilities of deep500 and for interested
people to investigate further.

6.2.1 1 GPU

To showcase the possibilities in figure 6.1 one can definitely see how equal both
the reference and the corresponding native optimizers are. The really important
question emerges that why do both of the reference optimizers not converge equally
since they make exactly the same calculations. Since the operations are checked by
ONNX and therefore correctly implemented by the backends, the operations can be
assumed to be correct. Therefore one could take a look at the gradient calculation as
a first step in finding the reason for this difference in convergence.

FIGURE 6.1: Comparisons of Momentum optimizers

6.2.2 3 GPUs

With testing on three GPUs there are three interesting things to check:

1. Is the accuracy per sample of our distributed optimizers comparable with Horovod?

2. Is the time used for our native Caffe2 optimizer comparable with Horovod?
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3. How do the distributed optimizers compare against the non distributed ones ?

We can read off the answer to the first question out of the figure 6.2 and conclude
that Horovod has definitely a slower convergence rate per sample than our reference
implementations. That the overall convergence seems to go in the same direction can
be seen in figure 6.3.

FIGURE 6.2: Only Tensorflow Adam Loss vs Samples

For the second question one can look at the figure 6.4 where the time achieved with
our own simple implementation for distributed computing with no optimization at
all is comparable with the one achieved by Horovod. The difference in loss could be
attributed to the overall slower convergence of Tensorflow compared to Caffe2 but
it had to be investigated further obviously.

Considering the last question our intuition tells us the following: In the dis-
tributed case the time used should be a third of the time needed in the non dis-
tributed case neglecting the communication overhead since each of the nodes has to
work through a third of the data only. And for the efficiency per sample one can
consider the distributed case as just using a bigger batch size. And since we always
correct only a small step into the right direction a lot of smaller update steps are
better then one big step and therefore a bigger batch size means that we should con-
verge a little bit slower. Our intuition is supported by the plot in 6.5 where one can
see that the accuracy rises slower for the distributed ones despite working through
the same dataset with the same algorithms.

In the second figure we can see that the distributed reference implementation
(light orange) needs less then half the time that the non distributed reference imple-
mentation (light blue) needs to comb through the whole dataset. For the two native
optimizers one can also see that the non distributed (dark blue) needs about double
the time that our own distributed fast optimization (dark orange) needs. Which is
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FIGURE 6.3: Only Tensorflow Adam Loss vs Time

FIGURE 6.4: Only Adam optimizer vs Horovod
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FIGURE 6.5: Caffe2 consistent parameter server accuracy by epoch

not to bad considering all the overhead we get from copying from GPU to CPU and
sending over the wire. 6.6

6.2.3 Comparisons between vanilla backend and deep500 implementa-
tion

Since deep500 offers so much flexibility one could think that it has to take significant
performance hits because of that. But seeing deep500 as any other compiler should
switch this view from how slow is deep500 to how slow the backend is. Maybe the
backend implementation from one method is just wrongly implemented. Depend-
ing on the backend deep500 works more like an interpreter as in the pytorch case or
"machine code" / static graph as in the Caffe2/Tensorflow case.
To be sure that the argumentation is correct it has to be tested, too. The experiment
was conducted in three steps:

1. The ONNX graph to test is imported into the backend.

2. After the visitor parsed the graph it is exported into the native graph represen-
tation of the framework to test.

3. Removed from deep500 the graph is run natively and the execution time is
measured.

4. Compare the times with the not exported times from native deep500.

All the code with the exporting of the graphs etc. is kept in the python file and
package deep500.examples.benchmark.export_model_native.
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FIGURE 6.6: Caffe2 consistent parameter server loss by time

The data generated seen in the table 6.1 is from comparing adagrad with Horovod
run on 3 GPUs and the backend is Tensorflow deep500 vs Tensorflow native both
running Horovod optimizer.

native adagrad Horovod with vs deep500 adagrad with Horovod on 3 GPUs

epoch time used training native time used training deep500

0 247.2994971275 254.2741508484
1 242.9404921532 242.9453964233
2 242.8943395615 242.9795174599
3 242.9469845295 242.9351446629
4 242.9235265255 242.9188194275
5 243.021951437 242.9739191532
6 242.9277544022 242.9587442875
7 242.9519767761 242.9454965591
8 243.0073399544 242.92359519
9 242.9535527229 243.0242242813

TABLE 6.1: Native Tensorflow vs deep500 tensorflow

As one can see there is no significant difference. In the repository that is linked above
there are three more tests and the corresponding data committed where multiple
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combinations of optimizers can be seen and that there is no significant difference in
time.
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Chapter 7

Conclusion

7.1 Accomplishments

We started by adding a parser that parses ONNX and creates a internal python rep-
resentation of the model, graph and node structure that is simple to access with the
visitor pattern. This internal representation allows to be extended by any operation
that ONNX offers. Furthermore there is a mechanism so that custom operations
can be added. Deep500 uses this to add the yet from ONNX missing loss functions.
Accessing this internal structure is possible via an auto generated visitor structure
based on the C++ schemas that ONNX provides. The visitor structure allows sim-
ple translation from ONNX to pytorch ( 20% operator coverage), Tensorflow ( 50%
operator coverage) or Caffe2 ( 50% operator coverage) specific backend code. (The
percentage in the brackets are the support that is already implemented in Deep500)

By abstracting away the backends by a so called network layer we could add a
very general optimization framework. To show case the optimization layer we built
the following reference implementation of optimizers: gradient descent optimizer,
momentum optimizer, adam optimizer, accelegrad and adagrad. The optimization
layer still supports native optimizers with the following ones already implemented:
For Tensorflow, momentum, adam, and adagrad and for Caffe2, gradient descent,
momentum, adam, and adagrad.

Based on MPI we added a communication network. This communication net-
work and the optimization layer we added is used to implement the following dis-
tributed optimization algorithms that work with any non distributed reference opti-
mizer as base optimizer: Consistent parameter server, inconsistent parameter server,
consistent decentralized and consistent neighbors decentralized.

It is not only possible to use native non distributed optimization but also native
distributed optimization. As a use case Deep500 has implemented its own version of
native distributed optimization for Caffe2 with the native operations implemented
in C++ where consistent parameter server, consistent decentralized, and consistent
neighbors decentralized can be used. To show the flexibility of the framework we
also added the Horovod distributed optimizer which uses native Tensorflow opera-
tions.

For testing purposes Deep500 can test a single operation for correctness, accuracy
and time by reusing all the tests that ONNX offers. Reusing all the ONNX tests
again it can test gradients by calculating gradients numerically and comparing it
versus gradients calculated by backpropagation. There are ONNX tests that run
over a whole network with many operations and so more complicated gradient can
be tested. By running two networks parallel optimizers can be compared step by
step.

Besides specific testing, measuring and reporting is also important. For this pur-
pose Deep500 has a built in metric framework. It works as an event system where
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by implementing the specific super class one gets all the interesting events (e.g. be-
fore epoch, before inference, after inference, before optimizing step, after optimizing
step). Based on the metric framework some subset of use cases added are: Progress
bar, CSV generator, loss plot generator and a callback ticker to a specific website.

7.2 Future Work

Some ideas that came up while working on this project.

7.2.1 Fix performance problems with reference optimizers

It is definitely a problem that the reference optimizers are really slow. This is mainly
due to the extraction of the weights out of the network optimizing externally and
put them back in. One of the possible solutions would be to add a tensor abstraction
layer which works then directly on the specific native tensors and are only extracted
outside of the network if needed in a different format.

7.2.2 Intermediate optimization

On could create a backend that takes ONNX and outputs optimized ONNX again.

7.2.3 Distributed Optimization

Since it is so easy to implement distributed training one could test many different
models.

7.2.4 Write optimized code directly

A backend basically calls already finalized operations in the backend. These oper-
ations get executed in isolation of the other operations in the graph. This can be a
performance hit since every operation has to be started and handled in isolation, too.
So one way around this would be to instead of directly executing the corresponding
operations, comparable with an interpreted programming language, to write the
code for the operation into a single file and then compile this single file into a sin-
gle operation, comparable with a compiled programming language. This would be
simple with Deep500’s visitor pattern.
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